Neural Citation Network for Context-Aware Citation Recommendation

Problem

Given a short passage of text (citation context), we recommend a list of high-quality candidate papers to cite or fill the citation placeholder. For example:

<u>Citation Context</u>: ...a great deal of recent research builds upon Ponte and Croft's initial proposal **[Citation Placeholder]** wherein the rank of a document d is based on the probability...

Cited Paper: Jay M. Ponte and W. Bruce Croft. 1998. A Language Modeling Approach to Information Retrieval. (SIGIR '98).

Key Contributions

- We propose a flexible encoder-decoder architecture Neural Citation Network (NCN) embodying a robust representation of the citation context with a max time delay neural network, further augmented with an attention mechanism, author networks and a gated recurrent unit decoder.
- We demonstrate the effectiveness of integrating the author networks on the large scale RefSeer dataset significantly outperforming baselines across four different metrics.

Neural Citation Network

Encoder, a Time Delay Neural Network (TDNN) $f(\cdot)$, capturing phrase level semantics over the citation context \mathbf{X}^q with a sliding window of convolutions followed by max pooling

 $o_k = \operatorname{ReLU}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{k:k+l-1}^q + b_k); \qquad \hat{o} = \max\{o_1, \dots, o_{n-l+1}\}$ Next a fully connected layer captures complex nonlinear interactions between each phrase

$$\mathbf{s}_j = \tanh(\mathbf{U}_{s_j}\mathbf{\hat{o}}_j + \mathbf{b}_{s_j})$$

Author Networks encode both the citing author(s) \mathbf{A}^{q} , and cited author(s) \mathbf{A}^{d} , with two separate TDNNs concatenated with the citation context

$$\mathbf{s}_j = [f(\mathbf{X}^q) \oplus f(\mathbf{A}^q) \oplus f(\mathbf{A}^d)]_j$$

Attention Mechanism iteratively considers the importance of the citation context, citing author(s) and cited author(s) during the decoding process

$$\mathbf{c}_i = \sum_j \alpha_{ij} \mathbf{s}_j$$
 where $\alpha_{ij} = \operatorname{softmax}(\mathbf{v}^{\mathsf{T}} \operatorname{tanh}(\mathbf{W}_a \mathbf{h}_{i-1} + \mathbf{v}_{ij})$

Decoder leverages a Gated Recurrent Unit (GRU) to conditionally score the cited paper's title given the citation contexts and authors.

Travis Ebesu, Yi Fang

Department of Computer Engineering Santa Clara University {tebesu,yfang}@scu.edu

MRR	NDCG
0.0606	0.0676
0.0777	0.0875
0.1054	0.1134
0.1032	0.1114
0.2667	0.2592

Context:	"find a distribution over the l
	posterior of interest [Citatio
	provide effective approximati
	Bayesian models"
NCN:	1. Graphical models, ex
	variational inference
	2. Graphical models and vari
	3. An introduction to va
	graphical models
CTM:	1. Indexing by latent semant
	2. An introduction to va
	models
	3. Bayesian data analysis
	1. An introduction to va
RNN-to-RNN:	models
	2. The variational formulatio
	3. A Bayesian analysis of the
	identified parameters

School of Engineering